
– R 7 :: 1 – 0024 Spring 2010

Parallel Programming
0024

Recitation Week 7

Spring Semester 2010

– R 7 :: 2 – 0024 Spring 2010

Today‘s program
Assignment 6
Review of semaphores

 Semaphores
 Semaphoren and (Java) monitors

Semaphore implementation of monitors (review)
Assignment 7

– R 7 :: 3 – 0024 Spring 2010

Semaphores
Special Integer variable w/2 atomic operations

 P() (Passeren, wait/up)
 V() (Vrijgeven/Verhogen, signal/down)

Names of operations reflect the Dutch origin of the
inventor ...

– R 7 :: 4 – 0024 Spring 2010

class Semaphore
public class Semaphore {

private int value;
public Semaphore() {

value = 0;
}

public Semaphore(int k) {
value = k;

}
public synchronized void P() { /* see next slide */ }
public synchronized void V() { /* see next slide */ }

}

– R 7 :: 5 – 0024 Spring 2010

P() operation
public synchronized void P() {

while (value == 0) {
try {

wait();
}
catch (InterruptedException e) { }

}
value --;

}

– R 7 :: 6 – 0024 Spring 2010

V() operation
public synchronized void V() {

++value;
notifyAll();

}

– R 7 :: 7 – 0024 Spring 2010

Comments
You can modify the value of an semphore instance only

using the P() and V() operations.
 Initialize in constructor

Effect
 P() may block
 V() never blocks

Application of semaphores:
 Mutual exclusion
 Conditional synchronization

– R 7 :: 8 – 0024 Spring 2010

2 kinds of semaphores
Binary semaphore

 Value is either 0 or 1
 Supports implemention of mutual exclusion

Semaphore s = new Semaphore(1);
s.p()
//critical section
s.v()

Counting (general) semaphore
 Value can be any positive integer value

– R 7 :: 9 – 0024 Spring 2010

Fairness
A semaphore is considered to be “fair“ if all threads

that execute a P() operation eventually succeed.

Different models of fairness –

Semaphore is “unfair”: a thread blocked in the P()
operation must wait forever while other threads (that
executed the operation later) succeed.

– R 7 :: 10 – 0024 Spring 2010

Semaphores in Java
java.util.concurrent.Semaphore

acquire() instead of P()

release() instead of V()

Constructors

Semaphore(int permits);

Semaphore(int permits, boolean fair);
 permits: initial value
 fair: if true then the semphore uses a FIFO to

manage blocked threads

– R 7 :: 11 – 0024 Spring 2010

Semaphores and monitors
Monitor: model for synchronized methods in Java

Both constructs are equivalent
One can be used to implement the other

– R 7 :: 12 – 0024 Spring 2010

Example from Mar 18
See slides for context

– R 7 :: 13 – 0024 Spring 2010

Buffer using condition queues
class BoundedBuffer extends Buffer {

public BoundedBuffer(int size) {

super(size);

}

public synchronized void insert(Object o)

throws InterruptedException {

while (isFull())

wait();

doInsert(o);

notifyAll();

}// insert

– R 7 :: 14 – 0024 Spring 2010

Buffer using condition queues,
continued
// in class BoundedBuffer

public synchronized Object extract()

throws InterruptedException {

while (isEmpty())

wait();

Object o = doExtract();

notifyAll();

return o;

}// extract

} // BoundedBuffer

– R 7 :: 15 – 0024 Spring 2010

Emulation of monitor w/ semaphores
We need 2 semaphores:

One to make sure that only one synchronized
method executes at any tiven time

call this the “access semaphore” (S)

binary semaphore

One semaphore to line up threads that are waiting for
some condition

call this the “condition semaphore” (SCond) – also binary
threads that wait must do an “acquire” and this will not
complete

For convenience:
 Counter waitThread to count number of waiting threads
 i.e., threads in queue for SCond

– R 7 :: 16 – 0024 Spring 2010

Basic idea
1) Frame all synchronized methods with S.acquire() and

S.release()
This ensures that only one thread executes a synchronized

method at any point in time
Recall S is binary.

2) Translate wait() and notifyAll() to give threads
waiting in line a chance to progress (these threads
use SCond)
To simplify the debate, we require that “notifyAll()” is the last

action in a synchronized method
Java does not enforce this requirement but the mapping of

synchronized methods into semaphores is simplified.

– R 7 :: 17 – 0024 Spring 2010

Buffer with auxiliary fields
class BoundedBuffer extends Buffer {

public BoundedBuffer(int size) {

super(size);

access = new Semaphore(1);

cond = new Semaphore(0);

}

private Semaphore access;

private Semaphore cond;

private int waitThread = 0;

// continued

– R 7 :: 18 – 0024 Spring 2010

1) Framing all methods
public void insert(Object o)throws InterruptedException {

access.acquire(); //ensure mutual exclusion

while (isFull())

wait();

doInsert(o);

notifyAll();

access.release();

}// insert

– R 7 :: 19 – 0024 Spring 2010

Notes
There is one semaphore for all synchronized methods

of one instance of “BoundedBuffer”
Why?

Must make sure that insert and extract don’t overlap.

There must be separate semaphore to deal with waiting
threads.
Why?

Imagine the buffer is full. A thread that attempts to insert an
item must wait. But it must release the access semaphore.
Otherwise a thread that wants to remove an item will not be able
to executed the (synchronized!) extract method.

– R 7 :: 20 – 0024 Spring 2010

2) Translate wait and notifyAll
The operation

wait()

is translated into
waitThread ++

S.release(); // other threads can execute synchronized
methods

SCond.acquire(); // wait until condition changes

S.acquire();

waitThread --

– R 7 :: 21 – 0024 Spring 2010

Each occurrrence of NotifyAll() is translated
if (waitThread > 0) {

for (int i=0; i< waitThread; i++) {

SCond.release();

}

}

All threads waiting are released and will compete to
(re)acquire S.

They decrement waitThread after they leave SCond.acquire

Note that to enter the line (i.e., increment waitThread) the
thread must hold the access semaphore S

– R 7 :: 22 – 0024 Spring 2010

Recall that S.release is done at the end of the
synchronized method
So all the threads that had lined up waiting for
SCond compete to get access to S
No thread can line up while the SCond.release
operations are done since this thread holds S.

– R 7 :: 23 – 0024 Spring 2010

Note
We wake up only all threads – they might not be able to

enter their critical section if the condition they waited
for does not hold. But all threads get a chance.
 This approach is different from what we discussed in the

lecture

– R 7 :: 24 – 0024 Spring 2010

Translate “wait()”
public void insert(Object o) throws InterruptedException {

access.acquire();

while (isFull()) {

waitThread ++;

access.release(); // let other thread access object

cond.acquire(); // wait for change of state

access.acquire()

waitThread --;

}

doInsert(o);

notifyAll();

access.release();

}// insert

– R 7 :: 25 – 0024 Spring 2010

Translate “notifyAll()”
public void insert(Object o) throws InterruptedException {

access.acquire();

while (isFull()) {

waitThread ++;

access.release(); // let other thread access object

cond.acquire(); // wait for change of state

access.acquire()

waitThread --;

}

doInsert(o);

if (waitThread > 0) {

for (int i=0; i<waitThread; i++) {

cond.release(); } }

access.release();

}// insert

– R 7 :: 26 – 0024 Spring 2010

Example
Consider the buffer, one slot is empty, four operations

insert I1
insert I2
insert I2
extract E

I1 – access.acquire
I2 – access.acquire: blocks on access
I3 – access.acquire: blocks on access

I1 – waitThread == 0
I1.release

– R 7 :: 27 – 0024 Spring 2010

(cont)
I2 – access.acquire completes
I2 – buffer full
waitThread =1
I2 – access.release
I2 – cond.acquire – blocks on cond
I3 – access.acquire completes
I3 – buffer full
waitThread = 2
I3 – access.release
I3 – cond.acquire – blocks on cond

– R 7 :: 28 – 0024 Spring 2010

(cont)
E – access.acquire
remove item
E – SCond.release
E – SCond.release
E – access.release

One of I2 or I3 will succeed with access.acquire and be
able to insert the next item

– R 7 :: 29 – 0024 Spring 2010

Exercise
How would the method “extract” look like (if we used

semaphores to emulate monitors)?

– R 7 :: 30 – 0024 Spring 2010

Assignment 7

Hint: Thread.currentThread() returns a handle to
the current thread and might be useful for the
assignment.

– R 7 :: 31 – 0024 Spring 2010

Overview
Your task is to implement a Read/Write Lock
Max. 4 Threads
Max. 2 Reader Threads (shared access is allowed) and

1 Writer Thread
A thread that executes read() is a reader

At a later time it can be a writer

– R 7 :: 32 – 0024 Spring 2010

The challenge
No starvation
Efficient implementation

 If there are fewer than 2 readers and no waiting writers then
the next reader must be allowed to proceed

 If there is no contention then a thread must be allowed to
proceed immediately

Your implementation must be fair (you may want to use
FIFOQueue.java)

– R 7 :: 33 – 0024 Spring 2010

Other comments
Keep your solution as simple as possible
Decide what you want to use [your decision]

 Monitors (synchronized methods)
 Semaphores

 http://java.sun.com/j2se/1.5.0/docs/api/
Semaphore

Only change class Monitor.java
 If you feel it‘s necessary to change other files, please let us

know. 

Please comment your code!

http://java.sun.com/j2se/1.5.0/docs/api/�

– R 7 :: 34 – 0024 Spring 2010

You may want to recall
Thread.currentThread().getId()

 wait_list.enq(Thread.currentThread().getId())
 wait_list.getFirstItem() == Thread.currentThread().getId()

– R 7 :: 35 – 0024 Spring 2010

Your log could look like this …
READ LOCK ACQUIRED 1
READ LOCK RELEASED 0
WRITE LOCK ACQUIRED 1
WRITE LOCK RELEASED 0
READ LOCK ACQUIRED 1
READ LOCK ACQUIRED 2
READ LOCK RELEASED 1
READ LOCK ACQUIRED 2
READ LOCK RELEASED 1
READ LOCK ACQUIRED 2

	Foliennummer 1
	Today‘s program
	Semaphores
	class Semaphore
	P() operation
	V() operation
	Comments
	2 kinds of semaphores
	Fairness
	Semaphores in Java
	Semaphores and monitors
	Example from Mar 18
	Buffer using condition queues
	Buffer using condition queues, continued
	Emulation of monitor w/ semaphores
	Basic idea
	Buffer with auxiliary fields
	1) Framing all methods
	Notes
	2) Translate wait and notifyAll
	Foliennummer 21
	Foliennummer 22
	Note
	Translate “wait()”
	Translate “notifyAll()”
	Example
	(cont)
	(cont)
	Exercise
	Assignment 7
	Overview
	The challenge
	Other comments
	You may want to recall
	Your log could look like this …

