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Outline

Discussion of last assignment

Presentation of new assignment
 Introduction to Merge-Sort
 Code Skeletons (see homepage) 
 Issues on Parallelizing Merge-Sort
 Performance measurements

Questions/Comments?
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Discussion of Homework 3
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Part2 – First question

Why is it not sufficient to add the 'synchronized' keyword 
to the read() and write() methods to guarantee the 
specified behavior of the producer/consumer problem?
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Part2 – First question

Why is it not sufficient to add the 'synchronized' keyword 
to the read() and write() methods to guarantee the 
specified behavior of the producer/consumer problem?

Solution: Synchronization ensures that the producer and 
the consumer can not access the buffer at the same time. 
But it does not prevent the consumer to read a value 
more than one time or the producer to overwrite a value 
that was not read.
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Part2 – Second Question

Would it be safe to use a boolean variable as a "guard" 
within the read() and write() methods instead of using the 
synchronized keyword?
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Part2 – Second Question

Would it be safe to use a boolean variable as a "guard" 
within the read() and write() methods instead of using the 
synchronized keyword?

Solution: No, reading and writing a value is not atomic! –
Can you tell me why, e.g., i++ is not atomic?
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Part3 – First Question

Would it suffice to use a simple synchronized(this) within 
the run()-method of each, the producer and the consumer 
to guard the updating of the buffer?
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Part3 – First Question

Would it suffice to use a simple synchronized(this) within 
the run()-method of each the producer and the consumer 
to guard the updating of the buffer?

No, since Producer and Consumer are different objects 
with different locks  no mutual exclusion guaranteed 
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Part3 – Second Question

What is the object that should be used as the shared 
monitor and (the object upon which the threads are 
synchronized())?

Solution: The shared instance of UnsafeBuffer.

Question: What could you have used instead?
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Part 3 – Third Question

What are the potential advantages/disadvantages of 
synchronizing the producer/consumer over synchronizing 
the buffer?
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Part 3 – Third Question

What are the potential advantages/disadvantages of 
synchronizing the producer/consumer over synchronizing 
the buffer?

Advantages:
 You can use arbitrary (also unsafe!) buffers
 You can do things in the Producer/Consumer that need to be done 

before the other thread can use the buffer. (For example print 
something to the console).

Disadvantages:
 More work to do :-) 
 More error-prone
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Presentation of Homework 4
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MergeSort

Problem: Sort a given list 'l' of 'n' numbers

Example:
 Input: 9 8 7 6 5 4 3 2 1 0
 Output: 0 1 2 3 4 5 6 7 8 9

Algorithm:
 Divide l into two sublists of size n/2
 Sort each sublist recursively by re-applying MergeSort
 Merge the two sublists back into one sorted list

End of recursion:
 Size of the sublist becomes 1
 If size of a sublist > 1 => other sorting needed
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Example: Divide into sublists

5, 4, 3, 2, 1, 0

5, 4, 3 2, 1, 0

5, 4 3

5 4

2, 1 0

2 1
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Merging

Combine two sorted lists into one sorted list

Example:
 List 1: 0, 5
 List 2: 3, 4, 45
 Output: 0, 3, 4, 5, 45

Merging example:
 Create a list Output of size 5
 0, 5 and 3, 4, 45 0 < 3 → insert 0 in Output
 0, 5 and 3, 4, 45 3 < 5 → insert 3 in Output
 0, 5 and 3, 4, 45 4 < 5 → insert 4 in Output
 0, 5 and 3, 4, 45 5 < 45 → insert 5 in Output
 Finally, insert 45 in Output
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Example: Merging Sorted Sublists

0, 1, 2, 3, 4, 5

3, 4, 5 0, 1, 2

4, 5 3

5 4

1, 2 0

2 1
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The Code Skeletons
(Eclipse) 
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A Parallel MergeSort

Which operations can be done in parallel?
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A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread
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A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread
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A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread

Synchronization issues
 Limitations in parallelization?
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A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread

Synchronization issues
 Limitations in parallelization?

 Merge can only happen if two sublists are sorted

Performance issues
 Number of threads?
 Size of array to sort?
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Load balancing

• What if: size of array % numThreads != 0?

• Simple (proposed) solution
– Assign remaining elements to one thread

• Balanced (more complicated) solution
– Distribute remaining elements to more threads
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Performance Measurement

# of threads
/array size

1 2 4 8 16 32 64 … 1024?

100,000 x

500,000 x

…

10,000,000?
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How to Measure Time?
• System.currentTimeMillis() might not be exact

• Granularity might be higher than a millisecond
• Might be slightly inaccurate

• System.nanoTime() 
• Nanosecond precision, but not nanosecond accuracy

• For our measurements System.currentMillis() is good 
enough
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How to Measure Time?
long start, end;

start = System.currentMillis();

// some action

end = System.currentMillis();

System.out.println("Time elapsed: “

+ (end - start));
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Questions to be answered
• Is the parallel version faster?

• How many threads give the best performance?

• What is the influence of the CPU model/CPU 
frequency?
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The Harsh Realities of Parallelization
Ideally

 upgrading from uniprocessor to n-way multiprocessor should 
provide an n-fold increase in computational power

Real world
most computations cannot be efficiently parallelized 

• Sequential code, synchronization, communication 

Speedup
– time(single processor) / time(n concurrent processors) 



Mein Tipp

Thread t = …

t.start();

…

try {

t.join(); // Warten bis t fertig ist

} catch (InterruptedException e) {

e.printStackTrace();

}



Mein Tipp

int[] array

System.out.println(Arrays.toString(array));

Oder für die ersten paar Einträge

System.out.println(Arrays.toString(array).substring(0,20));

StringBuffer und StringBuilder sind schneller als String.
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Any Questions?
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