
Parallel Programming
0024

Mergesort

Spring Semester 2010

2

Outline

Discussion of last assignment

Presentation of new assignment
 Introduction to Merge-Sort
 Code Skeletons (see homepage)
 Issues on Parallelizing Merge-Sort
 Performance measurements

Questions/Comments?

3

Discussion of Homework 3

4

Part2 – First question

Why is it not sufficient to add the 'synchronized' keyword
to the read() and write() methods to guarantee the
specified behavior of the producer/consumer problem?

5

Part2 – First question

Why is it not sufficient to add the 'synchronized' keyword
to the read() and write() methods to guarantee the
specified behavior of the producer/consumer problem?

Solution: Synchronization ensures that the producer and
the consumer can not access the buffer at the same time.
But it does not prevent the consumer to read a value
more than one time or the producer to overwrite a value
that was not read.

6

Part2 – Second Question

Would it be safe to use a boolean variable as a "guard"
within the read() and write() methods instead of using the
synchronized keyword?

7

Part2 – Second Question

Would it be safe to use a boolean variable as a "guard"
within the read() and write() methods instead of using the
synchronized keyword?

Solution: No, reading and writing a value is not atomic! –
Can you tell me why, e.g., i++ is not atomic?

8

Part3 – First Question

Would it suffice to use a simple synchronized(this) within
the run()-method of each, the producer and the consumer
to guard the updating of the buffer?

9

Part3 – First Question

Would it suffice to use a simple synchronized(this) within
the run()-method of each the producer and the consumer
to guard the updating of the buffer?

No, since Producer and Consumer are different objects
with different locks  no mutual exclusion guaranteed

10

Part3 – Second Question

What is the object that should be used as the shared
monitor and (the object upon which the threads are
synchronized())?

Solution: The shared instance of UnsafeBuffer.

Question: What could you have used instead?

11

Part 3 – Third Question

What are the potential advantages/disadvantages of
synchronizing the producer/consumer over synchronizing
the buffer?

12

Part 3 – Third Question

What are the potential advantages/disadvantages of
synchronizing the producer/consumer over synchronizing
the buffer?

Advantages:
 You can use arbitrary (also unsafe!) buffers
 You can do things in the Producer/Consumer that need to be done

before the other thread can use the buffer. (For example print
something to the console).

Disadvantages:
 More work to do :-)
 More error-prone

13

Presentation of Homework 4

14

MergeSort

Problem: Sort a given list 'l' of 'n' numbers

Example:
 Input: 9 8 7 6 5 4 3 2 1 0
 Output: 0 1 2 3 4 5 6 7 8 9

Algorithm:
 Divide l into two sublists of size n/2
 Sort each sublist recursively by re-applying MergeSort
 Merge the two sublists back into one sorted list

End of recursion:
 Size of the sublist becomes 1
 If size of a sublist > 1 => other sorting needed

15

Example: Divide into sublists

5, 4, 3, 2, 1, 0

5, 4, 3 2, 1, 0

5, 4 3

5 4

2, 1 0

2 1

16

Merging

Combine two sorted lists into one sorted list

Example:
 List 1: 0, 5
 List 2: 3, 4, 45
 Output: 0, 3, 4, 5, 45

Merging example:
 Create a list Output of size 5
 0, 5 and 3, 4, 45 0 < 3 → insert 0 in Output
 0, 5 and 3, 4, 45 3 < 5 → insert 3 in Output
 0, 5 and 3, 4, 45 4 < 5 → insert 4 in Output
 0, 5 and 3, 4, 45 5 < 45 → insert 5 in Output
 Finally, insert 45 in Output

17

Example: Merging Sorted Sublists

0, 1, 2, 3, 4, 5

3, 4, 5 0, 1, 2

4, 5 3

5 4

1, 2 0

2 1

18

The Code Skeletons
(Eclipse)

19

A Parallel MergeSort

Which operations can be done in parallel?

20

A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

21

A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread

22

A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread

Synchronization issues
 Limitations in parallelization?

23

A Parallel MergeSort

Which operations can be done in parallel?
 Sorting

 Each sub-list can be sorted by a separate thread

 Merging
 Two ordered sub-lists can be merged by a thread

Synchronization issues
 Limitations in parallelization?

 Merge can only happen if two sublists are sorted

Performance issues
 Number of threads?
 Size of array to sort?

24

Load balancing

• What if: size of array % numThreads != 0?

• Simple (proposed) solution
– Assign remaining elements to one thread

• Balanced (more complicated) solution
– Distribute remaining elements to more threads

25

Performance Measurement

of threads
/array size

1 2 4 8 16 32 64 … 1024?

100,000 x

500,000 x

…

10,000,000?

26

How to Measure Time?
• System.currentTimeMillis() might not be exact

• Granularity might be higher than a millisecond
• Might be slightly inaccurate

• System.nanoTime()
• Nanosecond precision, but not nanosecond accuracy

• For our measurements System.currentMillis() is good
enough

27

How to Measure Time?
long start, end;

start = System.currentMillis();

// some action

end = System.currentMillis();

System.out.println("Time elapsed: “

+ (end - start));

28

Questions to be answered
• Is the parallel version faster?

• How many threads give the best performance?

• What is the influence of the CPU model/CPU
frequency?

29

The Harsh Realities of Parallelization
Ideally

 upgrading from uniprocessor to n-way multiprocessor should
provide an n-fold increase in computational power

Real world
most computations cannot be efficiently parallelized

• Sequential code, synchronization, communication

Speedup
– time(single processor) / time(n concurrent processors)

Mein Tipp

Thread t = …

t.start();

…

try {

t.join(); // Warten bis t fertig ist

} catch (InterruptedException e) {

e.printStackTrace();

}

Mein Tipp

int[] array

System.out.println(Arrays.toString(array));

Oder für die ersten paar Einträge

System.out.println(Arrays.toString(array).substring(0,20));

StringBuffer und StringBuilder sind schneller als String.

32

Any Questions?

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Load balancing
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Mein Tipp
	Mein Tipp
	Foliennummer 32

