
Parallel ProgrammingParallel Programming
00240024

Thread Synchronization Thread Synchronization ------ ExamplesExamples

Assignment 2

http://www.lantersoft.ch/de/parallelprog/parallelprog.phphttp://www.lantersoft.ch/de/parallelprog/parallelprog.php

DankeDanke fürfür die die KommentareKommentare

KlassennamenKlassennamen gross gross schreibenschreiben

ii++++oderoder ++++ii ??

Exception Exception imim throwthrow--Statement ? (Statement ? (ThrowNullThrowNull))

Integer.parseIntInteger.parseInt() (() (ExploreParseIntExploreParseInt))

NonNon--static, static und static, static und anonymeanonyme KlassenKlassen ((ClassDemoClassDemo))

Creating Threads

public class Main {public class Main {

public static void main(String[] public static void main(String[] argsargs) {) {

Buffer Buffer bufferbuffer = new = new UnsafeBufferUnsafeBuffer();();

new Thread(new Producer(buffer)).start();new Thread(new Producer(buffer)).start();

new Thread(new Consumer(buffer)).start();new Thread(new Consumer(buffer)).start();

}}}}

}}

��Start a threadStart a thread

•• thread.start() starts a new thread. A thread takes an thread.start() starts a new thread. A thread takes an
object of type Runnable in the constructor.object of type Runnable in the constructor.

•• subclass Thread and overwrite the run() methodsubclass Thread and overwrite the run() method

��Note: thread.run() does not create a new threadNote: thread.run() does not create a new thread

Putting a thread to sleep

try {try {

//doze a random time (//doze a random time (0 0 to to 00..5 5 secs)secs)

//to simulate workload//to simulate workload

Thread.sleep((int)(Math.random()*Thread.sleep((int)(Math.random()*500500));));

} catch (InterruptedException e) { ... }} catch (InterruptedException e) { ... }

}}}}

�� Thread.sleep(long) puts the current thread to sleep for the Thread.sleep(long) puts the current thread to sleep for the
specified time in milliseconds.specified time in milliseconds.

�� An InterruptedException is thrown when a thread is waiting, An InterruptedException is thrown when a thread is waiting,
sleeping, or otherwise paused for a long time and another thread sleeping, or otherwise paused for a long time and another thread
interrupts it using the interrupt method in class Thread.interrupts it using the interrupt method in class Thread.

Synchronized

public class Buffer {public class Buffer {

��Every class and every object has an intrinsic lockEvery class and every object has an intrinsic lock

��The The synchronizedsynchronized keyword marks code blocks where a thread keyword marks code blocks where a thread
must acquire the lock before proceeding must acquire the lock before proceeding

��The The synchronizedsynchronized keyword can be added to methodskeyword can be added to methods

��The “this” pointer is used as the lock for instance methodsThe “this” pointer is used as the lock for instance methods
public class Buffer {public class Buffer {

public synchronized void write(int i) {public synchronized void write(int i) {

... ...

}}

public synchronized int read() {public synchronized int read() {

... ...

}}

}}

Mutually exclusive
because both use “this”

as the lock

Synchronized II

public void someMethodpublic void someMethod11() {() {

//do something before//do something before

synchronized(anObject) {synchronized(anObject) {

... }... }

��The The synchronizedsynchronized keyword can also be used to guard arbitrary keyword can also be used to guard arbitrary
blocks of code within a method, even in different classesblocks of code within a method, even in different classes

�� It is important to use the correct object as the locks!It is important to use the correct object as the locks!

... }... }

//do something after//do something after

}}

public void someMethodpublic void someMethod22() {() {

//do something before//do something before

synchronized(anObject) {synchronized(anObject) {

... }... }

//do something after//do something after

}}

Mutually exclusive
blocks because they
use the same object
instance as the lock

Questions

• Can static methods be synchronized?

• What is the lock “object”?

• What is a deadlock?

• How can a deadlock occur?

The producer/consumer example

Producer Consumer

Buffer

write()

write()

write()

read()

read()

read()

�� A producer thread constantly produces values and A producer thread constantly produces values and
writes them into a writes them into a sharedshared bufferbuffer

�� A consumer thread reads a value from the shared buffer A consumer thread reads a value from the shared buffer
and uses itand uses it

�� Premise: Premise: EveryEvery value must be consumed value must be consumed exactly onceexactly once

��Question: How to synchronize those twoQuestion: How to synchronize those two

Homework 3: The buffer interface

public interface Buffer {public interface Buffer {

void write(void write(intint data) throws data) throws BufferFullExceptionBufferFullException;;

intint read() throws read() throws BufferEmptyExceptionBufferEmptyException;;

}}

public class public class UnsafeBufferUnsafeBuffer implements Buffer {implements Buffer {

��And an implementation thereof (not And an implementation thereof (not threadsafethreadsafe!):!):

public class public class UnsafeBufferUnsafeBuffer implements Buffer {implements Buffer {

private private intint data;data;

public void write(public void write(intint data) {data) {

this.datathis.data = data;= data;

}}

public public intint read() {read() {

return data;return data;

}}

}}

The producer

public class Producer implements public class Producer implements RunnableRunnable {{

//shared instance//shared instance

private Buffer private Buffer bufferbuffer;;

public Producer(Buffer public Producer(Buffer bufferbuffer) {) {

this.bufferthis.buffer = buffer; }= buffer; }

public void run() {public void run() {public void run() {public void run() {

intint counter = 0;counter = 0;

while(counter < while(counter < Integer.MAX_VALUEInteger.MAX_VALUE) {) {

try {try {

buffer.writebuffer.write(counter);(counter);

System.out.printlnSystem.out.println("Producer produced: " + counter);("Producer produced: " + counter);

counter++;counter++;

//do other work//do other work

} catch(} catch(BufferFullExceptionBufferFullException e) { /* try again next round*/}e) { /* try again next round*/}

The consumer

public class Consumer implements public class Consumer implements RunnableRunnable {{

//shared instance//shared instance

private Buffer private Buffer bufferbuffer;;

public Consumer(Buffer public Consumer(Buffer bufferbuffer) {) { this.bufferthis.buffer = buffer; }= buffer; }

public void run() {public void run() {

while(true) {while(true) {while(true) {while(true) {

try {try {

intint value = value = buffer.readbuffer.read();();

System.out.printlnSystem.out.println("("\\tt\\tt\\tConsumertConsumer consumed: " + value);consumed: " + value);

if(value == if(value == Integer.MAX_VALUEInteger.MAX_VALUE))

return;return;

//do some work with the value//do some work with the value

} catch (} catch (BufferEmptyExceptionBufferEmptyException e) { /*try again */}e) { /*try again */}

}}

Assignment 3

VerwendetVerwendet Thread.sleepThread.sleep(long)(long)

