Parallel Programming
0024

Thread Synchronization --- Examples



Assignment 2

http://www.lantersoft.ch/de/parallelprog/parallelprog.php
Danke fur die Kommentare

Klassennamen gross schreiben

I++oder ++i ?

Exception im throw-Statement ? (ThrowNull)
Integer.parselnt() (ExploreParselnt)

Non-static, static und anonyme Klassen (ClassDemo)



Creating Threads

public class Main {
public static void main(String[] args) {
Buffer buffer = new UnsafeBuffer();
new Thread(new Producer(buffer)).start();
new Thread(new Consumer(buffer)).start();

}
>< Start a thread

« thread.start() starts a new thread. A thread takes an
object of type Runnable in the constructor.

* subclass Thread and overwrite the run() method

< Note: thread.run() does not create a new thread



Putting a thread to sleep

try {
//doze a random time (0 to 0.5 secs)

//to simulate workload
Thread.sleep((int)(Math.random()*500));
} catch (InterruptedExceptione){ ... }

2< Thread.sleep(long) puts the current thread to sleep for the
specified time in milliseconds.

< An InterruptedException is thrown when a thread is waiting,
sleeping, or otherwise paused for a long time and another thread
interrupts it using the interrupt method in class Thread.



Synchronized

< Every class and every object has an intrinsic lock

< The synchronized keyword marks code blocks where a thread
must acquire the lock before proceeding

< The synchronized keyword can be added to methods

2<The “this” pointer is used as the lock for instance methods
public class Buffer {

public synchronized void write(int i) {

Mutually exclusive
because both use “this”
as the lock

}
public synchronized int read() {

}



Synchronized li

2<The synchronized keyword can also be used to guard arbitrary
blocks of code within a method, even in different classes

2< It is important to use the correct object as the locks!

public void someMethod1() {
//[do something before
synchronized(anObject) {

)

//do something after

} Mutually exclusive

blocks because they
use the same object
instance as the lock

public void someMethod?2() {
//[do something before
synchronized(anObject) {

)

//[do something after



Questions

 Can static methods be synchronized?
 What is the lock “object”?

« What is a deadlock?

« How can a deadlock occur?



The producer/consumer example

Producer Consumer
write()

write()

write()

< A producer thread constantly produces values and
writes them into a shared buffer

>< A consumer thread reads a value from the shared buffer
and uses it

< Premise: Every value must be consumed exactly once

#<Question: How to synchronize those two



Homework 3: The buffer interface

public interface Buffer {
void write(int data) throws BufferFullException;

int read() throws BufferEmptyException;
}

< And an implementation thereof (not threadsafe!):
public class UnsafeBuffer implements Buffer {
private int data;
public void write(int data) {
this.data = data;
}
public int read() {
return data;



The producer

public class Producer implements Runnable {
//shared instance
private Buffer buffer;
public Producer(Buffer buffer) {
this.buffer = buffer; }
public void run() {
int counter = 0;
while(counter < Integer.MAX_VALUE) {
try {
buffer.write(counter);
System.out.printin("Producer produced: " + counter);
counter++;

//do other work

1 antala/DiiffavCiillIEvaaniiam A\l /%X buwr Aacain rmawi varimaddx /)



The consumer

public class Consumer implements Runnable {
//shared instance
private Buffer buffer;
public Consumer(Buffer buffer) { this.buffer = buffer; }
public void run() {
while(true) {
try {
int value = buffer.read();
System.out.printin("\t\t\tConsumer consumed: " + value);
if(value == Integer.MAX_VALUE)
return;
//do some work with the value

} catch (BufferEmptyException e) { /*try again */}



Assignment 3

Verwendet Thread.sleep(long)



